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The ability of a two-layer neural network to learn a specific non-linearly-separable classification task,
the proximity problem, is investigated using a statistical mechanics approach. Both the tree and fully
connected architectures are investigated in the limit where the number K of hidden units is large, but
still much smaller than the number N of inputs. Both have continuous weights. Within the replica sym-
metric ansatz, we find that for zero temperature training, the tree architecture exhibits a strong over-
training effect. For nonzero temperature the asymptotic error is lowered, but it is still higher than the
corresponding value for the simple perceptron. The fully connected architecture is considered for two
regimes. First, for a finite number of examples we find a symmetry among the hidden units as each per-
forms equally well. The asymptotic generalization error is finite, and minimal for T— o where it goes
to the same value as for the simple perceptron. For a large number of examples we find a continuous
transition to a phase with broken hidden-unit symmetry, which has an asymptotic generalization error

equal to zero.

PACS number(s): 87.10.+e, 02.50.—r, 64.60.Cn

I. INTRODUCTION

Perhaps the most important property of feedforward
neural networks [1] is their ability to learn a rule from ex-
amples. By this we mean that, given a set of input-output
example pairs of data assumed to have been produced by
some unknown rule, an appropriate choice of network ar-
chitecture and algorithm will then allow us to train the
network not only to be able to reproduce the training ex-
amples, but also to generalize, i.e., to correctly predict
the output to new inputs on which it has not been
trained. The statistical mechanical tools developed by
Gardner and Derrida [2] can be used to determine the
generalization ability of neural networks. This approach
is powerful since, in many cases, it gives exact results for
the typical generalization properties of specific network
architectures learning specific rules [3]. Furthermore, it
can help us to develop an insight into how a neural net-
work actually generalizes.

To date, most work has focused on determining the
generalization ability of the simple perceptron attempting
to learn various rules. Unfortunately, the simple percept-
ron can only implement rules which are linearly separ-
able; other rules are nonrealizable. However, it has been
shown [4] that for any Boolean rule this severe restriction
can be overcome by introducing a layer of ‘“hidden”
units, each connected to every input unit, to produce a
two-layer neural network.

In this article, we study the ability of a specific two-
layer neural network, the committee machine, to learn a
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rule which is not linearly separable. The rule takes the
form of a classification task in which the network must
learn to correctly associate a random input with one of M
specified classes (prototypes). Previous study of this
problem has been restricted to the single-layer perceptron
[5,6], where the task is unlearnable when M scales with
the number of connections. Note that this rule differs in
nature from those previously studied for committee
machines since it cannot be expressed as one committee
machine being taught to reproduce the architecture of
another [7]. Our main aims are twofold. First we wish to
compare the performance of the “tree” version of the
committee machine, for which, due to the restricted con-
nectivity between the input and hidden layer, the result of
[4] mentioned above does not hold, to that of the simple
perceptron. This is of interest since it is not clear a priori
whether the greater complexity of the tree architecture
helps or hinders its generalization ability. Secondly, and
more importantly, we wish to investigate the mechanisms
which might allow the “fully connected” committee
machine to learn this classification task perfectly. In
both, we shall employ Gibbs learning such that we may
consider the role of a stochastic noise in the training dy-
namics.

In what follows, we introduce the architecture of both
the tree and fully connected versions of the committee
machine. We then define the exact nature of the rule,
and introduce the statistical mechanical formalism which
will be used. In Sec. III we describe the solution for the
tree committee machine, and in Sec. IV for the fully con-
nected committee machine. We conclude with a discus-
sion of our results.

II. THE MODEL

The committee machine is a simplified version of a gen-
eral two-layer network. Two variations of its architec-
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ture, the tree and the fully connected, are shown in Fig.
1. In both, each hidden unit can output one of two values
o,=*x1(k=1,...,K). A committee machine derives
its name from the fact that the final output o corresponds
to the state of the majority of the K hidden units. We can
therefore write

o =sgn , op=sgn(h;), (n

1 K
= g
VK ,Z’l k

where h, is the local field arriving at hidden unit k and
the prefactor of 1/V' K ensures that the argument of the
sgn function is O(1). In the tree, each hidden unit re-
ceives inputs from only N /K of the input units, none of
which are common to any other hidden unit, and so we
have

172 Nk /K
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i=N(k—1)/K+1
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where J); is the strength of the connection weight from
input unit 7/ to hidden unit k. However, in the fully con-
nected version, each hidden unit is connected to all of the
N inputs so that

1 & .
he= VN igljkiSi : 3)

The physical significance of this difference is that in the
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FIG. 1. Architecture of a committee machine. (a) The tree
committee machine; each of the K hidden units experiences only
a subset N/K of the inputs; (b) the fully connected committee
machine in which each of the K hidden units experiences all N
input units.
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tree committee machine no two hidden units are connect-
ed to the same part of the input space S. As a conse-
quence, the J inputting to each hidden unit are uncorre-
lated. Contrast this with the fully connected architecture
in which all hidden units are connected to the same input
space. Correlations will now arise between the J input-
ting to different hidden units which will cause the emer-
gence of additional order parameters.

To define the classification task, we specify M
categories or  prototypes SF={SHl (u=1,... M,
i=1,...,N), with each S# chosen independently and
randomly to be 1 with equal probability. To each we
associate a particular output 7#=+1. When a randomly
chosen configuration is input, our aim is to make the net-
work output the 7 corresponding to the category to
which this input is closest in Hamming distance. We
teach the system to do this by training it with P examples
S“ (1=1,...,P) for each prototype with each example
constrained to have a finite overlap m with its respective
prototype pattern, i.e.,

N
> SKSp=st8¢=Nm . 4

Geometrically, we may see each prototype as a vector in

/-dimensional space at the center of a cone with internal
angle arccosm. Its P example vectors lie on the surface of
this cone.

The problem of learning is cast in the language of sta-
tistical physics through the introduction of a cost func-
tion which is minimized by the network .7 which best
reproduces a set of training examples {S*, 7} [8]. We
define this ‘‘training energy”’ as

M P '
E,(.7,§S“/,f*‘l)= > 3 o(—rald,8) ., (5)
u=11=1
where ®(x ) is the Heaviside function
(1 ifx>0,
Blx )= (6)

}O otherwise .

We can associate this energy with a Monte Carlo
dynamical process operating at finite temperature
T=pB"'. T is therefore a measure of the amount of
“noise” during training. As the final equilibrium states
will then obey a Gibb’s distribution, each network
configuration J will, for a specific set of training exam-
ples, occur with a probability

‘P(J/):%exp[—ﬁE,(j,{S“l,T'“})], 7
where
z= [dp(J)exp[ —BE,(J,{S",7})] (8)

is the partition function and p(.J) contains all a priori
constraints on possible connection-weight configurations
J. We denote the thermal average over J space per-
formed with Eq. (7) by ( -+ ) g While the training ener-
gy tells us how well the network performs on the set of
training examples, it is the ability of the network to suc-
cessfully classify new inputs which is of interest to us.
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We therefore define an error function which measures the
generalization ability of the network for a specific set of
M prototypes averaged over all possible inputs S con-
strained to obey Eq. (4):

M
€7, (84, == 3 (O(—a(7,9)

S,S:S¢=Nm °
n=1

9)

As it is the typical properties of the system which are of
interest, we must average over the quenched randomness
in the choice of both prototypes and examples. The typi-
cal generalization error is then given by

€= (el T, (S, 7)) g) g gu (10)
and the average training error

&= g7 (BT84 7D) ) gu g - (1

These quantities can be obtained from the disorder-
averaged free energy per connection

1
—Bf=—A—r(an)S,us,‘ s (12)
where Z has been defined in Eq. (8). For example,
—_L 3Bf) (13)
" PM 3B

Though it is not possible to perform this average directly,
one can circumvent this problem by making use of the
identity

In(Z") (14)
n

(InZ)= lin't)

and the associated replica method [9]. In the work that
follows we will be considering the scaling regime in
which N — « with M /N finite. We will also be consider-
ing P,K >>1, but with both P /N and K /N going to zero.

III. THE TREE COMMITTEE MACHINE

We begin by considering the tree committee machine
with N weights subject to a spherical constraint on the

]|

a K A?
—Bf =extriin(1—q)+-——L——
Bf =extrrInl=g)+ oy T 2(1—g)
..,f K 1 B@ _].
+a Dt In Tr exp|— —
of kr=l1 S REPEESY P VK
where
Di=—3_ =2 and H(x)= [ "Dt (20)
Vor x

and we have introduced P=P /y? and ay=y>M /N. We
can write the generalization function defined in Eq. (9) in
terms of the order parameter A:
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weights to each hidden unit
K Nk /K N
p(I)=1I & h> J—-=1. (15)
k=1 |i=Nk—1/K+1 K

The free energy of the large tree committee machine is
obtained following a procedure similar to that described
in [7]. First we must use the integral representation of
the & function to introduce parameters which extract the
quantities to be averaged from inside the ® function in
the training energy. One then performs the averages over
the examples S*' and prototypes S# and introduces the
appropriate order parameters. There are two sets of
these. Dropping the replica index, we have first

172 Nk /K
M=yt TSE, (16)

N i=N(k—1)/K+1

which represents the local stability field at hidden unit k
produced by all P examples for prototype u. It becomes a
self-averaging order parameter in the limit P>>1 (we
have defined y=m /V'1—m?) and is directly related to
the probability that a hidden unit give the correct output
[see Eq. (21)]. The second set of order parameters

b K Nk /K
a0 — =

qx JI? a7

N i=N(k—1)/K+1

defines the overlap between two sets of weights inputting
to hidden unit k in different replicas a and b. It is a mea-
sure of the number of different configurations of J, which
produce the correct output. Invoking replica symmetry

4fb=4k+(1—‘1k )84 (18)

we can then integrate over J and eliminate conjugate pa-
rameters. As the free energy factorizes in prototypes, we
can drop the u index. We assume “translational invari-
ance” [10], i.e., that ¢,=¢q and A=A for all
k=1,...,K. In the limit N — o, the free energy is then
given by

(19)

Ty~ ,/7—

1 H(—7A) . @D

eA)= Tr O
8 (e =%1 k=1

This expression is quite straightforward. Since H(A) is
the probability that a single hidden unit classifies wrong-
ly, we see that we are summing over all possible internal
representations which produce the wrong final output,
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each weighted by the corresponding probability.

Both Eq. (19) and Eq. (21) are valid for any integer
value of K. However, we wish to consider the limit
K >>1. In this regime [or more precisely the regime
where K(1—g)>>1], a self-consistent scaling requires
that A=AV’ K ~O(1). The last term in Eq. (19) then
simplifies to become

|

aP [“ Dtinje P +(1—eP)
R
"V qe—AN2/7
X H l , Q2
Vl TG

where

G = 2 arcsin (23)

eff " q .
In this regime Eq. (21) also simplifies to become
172
€ (M)=H |k |= (24)
T

where A corresponds to the value at the saddle point of
the free energy for a given value of ay, P, and B. We can
interpret the 1/V'K scaling of A, as a committee effect:
the more committee members there are, the less well does
each have to classify in order to reproduce all the train-
ing examples correctly.

We have investigated two temperature regimes. At
T =0 we investigate the ability of the network to general-
ize when required to match the training examples exact-
ly. Figure 2 shows the zero-temperature generalization
error €,(T=0) as a function of the number of examples

T T T T T T

0‘2‘A " 1y L L il L Ll P |
0.1 1 10 100 1000

number of examples P

FIG. 2. Generalization error €, of the tree committee
machine (CM) as a function of P for ¢,=1.6. The T=0 curve
reaches an asymptotic error of 0.34. As soon as T >0 the gen-
eralization curves tend to a common asymptotic generalization
error of 0.26 (different from the 77=0 value). We also show the
generalization error curve for Hebbian weights.
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per prototype when ay=1.6. An evaluation of the saddle
point equation in the limit g—1 [with P(1—gq) finite]
gives the asymptotic value of the generalization error also
shown on this figure. We observe that the capacity of the
network is never reached in the studied regime: a, and P
are both O(1), i.e., we can always reproduce the training
examples without error. This is very different from the
simple perceptron which has a finite capacity, and is due
to the fact that the tree can perform many more dicho-
tomies of the input space than can the simple perceptron.
This has already been seen for the storage capacity [11].
We see that the generalization error initially falls as the
number of examples increases. However, it is somewhat
surprising to see that, beyond a certain value of P, it be-
gins to rise towards an asymptotic value. We understand
this as follows. As the problem is unlearnable for the tree
committee machine, the J which generalizes the best has
a finite training error. This means that the J which best
reproduces the training examples has a certain limit to its
ability, beyond which presenting new training examples
no longer has the beneficial effect of providing informa-
tion, but instead has the negative effect of imposing con-
straints which make its overall performance worse. This
effect, called overtraining, was already seen in the case of
the simple perceptron [6].

The regime T >0 corresponds to training the network
without requiring that the examples be learnt perfectly.
This has the advantage of preventing overtraining by al-
lowing the learning dynamics to find networks J which
may not reproduce the example set perfectly, but which
generalize better. This can be clearly seen from the
curves in Fig. 2 which show the effect of training at two
different temperatures 7=1 and T=5. In the limit of
large P, we can find the asymptotic generalization error
to be H(\/2/ma,). This limit is identical to that found
for Hebbian weights, which is the optimal learning rule
for a single-layer perceptron learning the proximity prob-
lem [12], and can be shown using similar arguments to be
the optimal learning rule for the tree committee machine.
From this it also follows that the optimal solution is
translationally invariant.

Despite the fact that the tree committee machine is
more “powerful” than the simple perceptron in terms of
the number of random input-output mappings it can per-
form, its generalization ability is actually worse for all
values of P. We therefore conclude that the tree architec-
ture is a worse choice for learning this task and speculate
that this is because the output is the result of K hidden
units, each learning the task independently, i.e., we have
K independent sets of N /K connections compared to one
set of N connections in the simple perceptron. It should
be pointed out that it is not possible to find a J which
would reduce a tree committee machine to a perceptron
for an arbitrary input. There is therefore no a priori
reason to believe that the tree committee machine should
perform at least as well as the perceptron.

IV. THE FULLY CONNECTED COMMITTEE MACHINE

In the fully connected network, each hidden unit re-
ceives inputs from all N units in the input layer. The
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spherical normalization on the coupling strengths there-
fore takes the form

p(I)= [[ 8 (25)

k=1

2 ka

i=1

The derivation of the free energy follows closely that al-
ready described for the tree committee machine. A
feature specific to the fully connected architecture is a
coupling between hidden units due to the fact that they
both receive inputs from all of the input space. Hence, in
addition to the A and g introduced for the tree [Egs. (16)
and (17) where the sum is now over all N input units], we
require two new order parameters:

1 N
Nz ays (j<k), (26)

N
Dip=— zJ“Jk, (j<k,a#b) . @7

As before, we impose replica symmetry,
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work J which minimizes the training energy. Dy, is the
typical overlap between weights coming from the same
input unit, connected to different units j and k in
different network configurations which both minimize the
training energy.

As before, the free energy factorizes in the prototypes.
However, as different J; are no longer independent, we
do not immediately impose translational invariance for
Ag. In doing this, we are allowing for the possibility that
different hidden units perform differently. However, we
do impose translational invariance upon the remaining
order parameters, i.e., D =D and C k—C One can
demonstrate that this sxmphﬁcatlon is not inconsistent
with breaking the committee symmetry for A. Its disad-
vantage is that it constrains us to search in only a subset
of the space of solution networks, i.e., those networks
which minimize the training energy and have different A
for different hidden units, but which must also have
translational invariance in C and D. In the N — o limit,
the free energy per connection f=F/NK is written as
the sum of an entropy term G, which measures the
volume of 7 space minimizing the training energy, and an
energy term G,

Dit=Dj . (28)
%o
Order parameter Cj, is interpreted as the typical overlap —Bf= . Cegt{rl | Go+ ?Gl (29)
between weights coming from the same input unit, con- K
nected to different hidden units j and k in the same net- We find
J
1 —_
Go=5 In[1—g+(K—1(C—D)]+E L In(1—g—C+D)+ L n(2re)
K K 2
qg—(ay/K)JA a(C—D) | A;
(C—D)[g+(K—1)D] K2 p 0
2[1—q+(K—1)(C D)[(1—g—C+D) 2(1—g—C+D) 2K[1—g+(K—1)(C—D)]
and
K
e -1 4,Vq—D +zV'C—D +yvD —A
=p [ Dy Dtyln{ [Dz Tr exp|—BO|— 7 H|r k
/ ka=11 / (re=£1) VK 2 e V1—¢—C+D
(31)
. . . h
To investigate the large K behavior of G, we have to
make self-consistent scaling assumptions: ¢ =KC and —5 ~Bi(1_.—B
d=KD. Such scalings have already been observed [11,7] G _Pf Dtln e " +(1~e™")
in other studies of fully connected committee machines.
We also make a simple scaling assumption for A, which [ —
makes G, scale independently of X in the large K limit X H 'V Qe —hea
and permits a limited breaking of the translational invari- l V1=Q04+(2/7)c
ance:
. — . (33)
A in VK hidden units , with
A= 2 (32)
VE for the remaining K — VK . Q= ;27_( d +arcsing)
Parameters A, A, and 7 are all O(1). Note that setting  and (34)

n= 0 or A=0 restores translational invariance for A. As
in the tree committee machine, we expand G, to first or-
der in K 7172 to obtain (see the Appendix)

172
A—n2H(A)—1) .
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The G, term is also expressed as a function of the rescaled order parameters:

G = In(27e) agnA? qo—(ay/K A2 In(1—qy)  aglc—d)nA+i)
0 2 2VK (1—q,) 2(1—qy) 2 2K(1—gy+c—d)
(c—d)(1+c)
+— |In(1—gy+c—d)—In(1—g,)— e (35
2K o M40 = T S g e —d) 33

where we define g, =¢ — D which is zero when two solu-
tions which only differ by a permutation of hidden-unit
index are part of a single connected space of solutions
[13]. As a function of the rescaled parameters, the gen-
eralization function becomes

)‘eff ]

€ (j\\-, ,A,C):H —Y—_
g o [\/1+(2/7T)c

The solution to these equations depends upon how the
number of examples scales in relation to the number of
hidden units. We therefore consider two regimes.

Regime I: P~0(1)

This scaling is equivalent to that investigated for the
tree committee machine and means that G, ~0(1). In
order to have self-consistent saddle point equations, we
therefore require that (the nonconstant part of) G, be
O(1/K). For this, we must have A=0 (committee-
prototype symmetry) and g, =0 (permutation symmetry).
The translational invariance of A implies that all the hid-
den units will do equally well, i.e., each has the same
probability for making a correct classification. Permuta-
tion symmetry tells us that the network is far below its
capacity.

For ay=1.6 and T=0, we have solved the saddle point
equations as a function of P and inserted the correspond-
ing values of ¢, d, and A into Eq. (36) to give the generali-
zation error €, shown in Fig. 3(a). We see that it de-
creases monotonically from 0.5 at P =0 to a finite asymp-
totic value as P >>1. The asymptotic generalization er-
ror as a function of temperature is shown in Fig. 4. It de-
creases with increasing temperature and it is interesting
to note that, for T— oo, it goes to the same asymptotic
value as for the simple perceptron. In the committee-
prototype symmetric phase the fully connected commit-
tee machine always performs worse than the simple per-
ceptron for the same number of examples. This is due to
the fact that, when committee-prototype symmetry holds,
the problem is unlearnable for the network, which is ac-
tually disadvantaged by its more complex architecture in
the same way as the tree committee machine was in Sec.
ITI. As before, we see that the best training is the noisi-
est, i.e., when T — .

Regime II: P~O0(VK )

When the number of examples per prototype is
O(VK ), we rescale P, =P /V'K. As G, is now O(VK ),

self-consistent saddle point equations require that devia-
tions of the free energy about a constant term be
O(1/V'K ). This demands that g, =0, i.e., the network is
still far below its capacity. In order to have solutions to
the saddle point equations 9(Bf)/dc =8(Bf)/dd =0 we
require that to O(1/VK )
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FIG. 3. Learning curve for fully connected committee

machine. (a) The P regime, and (b) the P, regime, both with
ay=1.6 and T=0. For P, <3.64 there exists one physical solu-
tion, the symmetric A=0 solution with constant €,=0.27. At
P,=3.64 the solution with broken symmetry A= —2.28 be-
comes physical (7> 0) and the system makes a continuous tran-
sition to this solution. The symmetric solution remains metasta-
ble for all P, < 3.64.
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FIG. 4. Asymptotic generalization error eg(ﬁ—mo) of the
fully connected CM in the symmetric phase as a function of
training temperature T for a;,=1.6.

d=aynA+1)?* and c=d—1. (37)

Using the above relations the two remaining saddle point
equations can be brought into a simplified form:

9G, 1
A+(1—e ) —L_°_—q, 38
¢ TR VE 38
%G, 1, (R+mA) 9G, , 36 1, (39)
ok | ceATMAN TR T g | T

The free energy must also be minimized with respect to
the parameter 77 which describes the degree of breaking
of the hidden-unit symmetry and can be considered as a
continuous variable in the large K limit. The saddle
point equation for 7 yields

172

aGl 1
[2H(A)—1]—

A2
._+ — _—
L VK

A+
2

T
> 0. (40)

In this regime we have only considered zero-temperature
learning. For a,=1.6, we have found three solutions to
the saddle point equations. The free energy of these is
shown in Fig. 5. The committee-prototype symmetric
solution with A=0 still exists and has a constant general-
ization error equal to the asymptotic value of the
P~0(1) regime.

Two additional solutions exist with A fixed at a value
of —2.28 [this can be seen from combining Egs. (38) and
(40)]. This negative value signifies that nV'K hidden
units are actually more likely to give the wrong answer.
Whilst we find some solutions with %<0, we discount
these on the grounds that they are unphysical. In this re-
gion, the physical solution has 7=0. The solution with
the lowest free energy has >0 for P, >3.64. On in-
creasing P, the optimal 7 increases monotonically from
zero and so we have a continuous transition to a phase

number of examples P, = VK I3

FIG. 5. Free energy of three solutions for the fully connected
committee machine for ap=1.6 and T=0 in the P, regime.
The dashed line represents the symmetric solution, the dotted
lines the asymmetric solution with 17 <0, and the full lines the
asymmetric solutions with 7> 0. The asymmetric solution with
highest free energy corresponds to a maximum of the free ener-
gy-

with broken committee symmetry. The corresponding
generalization error is shown in Fig. 3(b). In this broken
symmetry phase, we have seen that a vanishing fraction
of the hidden units generalize particularly badly. Howev-
er, we find that this is more than compensated for by the
rest of the hidden units, which classify correctly with a
higher probability than in the committee-symmetric
phase. Though still very small (~0.5+A/V 27K ) the
overall effect is very significant since it results in a de-
crease of the asymptotic generalization error to zero—
given enough examples, the network can learn this task
perfectly. To first order, the asymptotic approach to zero
has been found to scale as follows:

1

Eg(ﬁl—>oo)~~—_—_.—— . (41)

P,V InP,

V. SUMMARY AND CONCLUSIONS

In this article we have studied the ability of two
different architectures to learn a specific non-linearly-
separable classification task.

For the simpler tree committee machine, the nonrealiz-
able nature of the task and T=0 Gibbs learning com-
bined to produce the phenomenon of overtraining, i.e., an
increase in the number of training examples results in a
reduction of the network generalization ability. Finite-
temperature training improved the situation by reducing
the value of the generalization error. However, this was
still greater than the corresponding value for the simple
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perceptron. We conclude that the tree architecture is
very bad at learning this task and have speculated that
this is due to the independent nature of the hidden units.

Due to the correlations arising from having overlap-
ping receptive fields, the fully connected committee
machine is a more interesting but also much more com-
plicated machine to study. We have considered the case
of finite-temperature Gibbs learning dynamics and intro-
duced an ansatz to allow for a possible breaking of
translational invariance for A. When trained with a finite
number of examples, it was found that the network
prefers to remain in a symmetric phase, i.e., all hidden
units have the same probability of classifying a novel ex-
ample correctly. The asymptotic generalization error de-
creases with increasing T to become equal to that of the
simple perceptron in the limit T— . A poorly general-
izing committee-symmetry phase has also been observed
in [7].

In the regime where the number of examples is large,
the network undergoes a continuous transition to a phase
in which there is a breaking of the translational symme-
try. A fraction O(1/V' K ) of the K hidden units classifies
a random input pattern wrongly with high probability
while the rest classify even better than in the symmetric
phase. This implies that on increasing the number of ex-
amples, an increasing number of hidden units “antilearn”
the prototypes and in doing so allow the remaining hid-
den units to classify even better. As we are far below net-
work capacity the training energy is zero for both the
symmetric and symmetry-broken solutions. Therefore
the breaking of this symmetry must be due to the number
of symmetry-broken solutions exceeding that of sym-
metric solutions. This breaking of symmetry is important
since it results in an asymptotic generalization equal to
zero. In fact, it is completely to be expected that one
must break the symmetry of the hidden units in order
that a nonlinearly-separable problem be solved. Whilst
perhaps the simplest, we cannot be sure that the
symmetry-breaking ansatz adopted in Eq. (32) is unique,
and suggest that it might be interesting to investigate al-
ternatives.

All of these results have been obtained within the repli-
ca symmetric ansatz. Whilst we would expect replica
symmetry to become invalid for the tree committee
machine as P becomes large, we would not expect this to
affect our conclusion that the tree performs worse than
the simple perceptron since this is already evident at very
low P. In the case of the fully connected network, we are
always considering a regime in which the network is well
below its capacity such that the typical overlap between
solution weight vectors, ¢ ~O(1/K), is small. We there-
fore expect that the replica symmetric solution is valid
and the results presented here are accurate if not exact.
An analytical test of the stability of the solution using the
AT [9] method is difficult.

It would be interesting to study the learning of this rule
by a fully connected committee machine with only a finite
number of hidden units. Though technically more
difficult, this could give further insight into how symme-
try breaking occurs and how the asymptotic generaliza-
tion error depends on K.

ACKNOWLEDGMENTS

Both authors would like to thank H. Schwarze for
sharing his insight with us, and T. Watkin for a conversa-
tion from which this work sprang. We also thank S. Solla
for a critical reading of our manuscript. D.O’K. thanks
the Niels Bohr Institute for their kind hospitality during
a brief visit and O.W. thanks the group at the University
of Oxford for an instructive and pleasant stay.

APPENDIX: THE FULLY CONNECTED COMMITTEE
MACHINE FOR LARGE K

Beginning with the energy term of Eq. (31), we intro-
duce the integral representation of the ® function to fac-
torize the trace over hidden units:

K —ixK 127
Tr H [e kH(Aka )]
Ind k=1
x . X

= cos +IiF, sin | —— , (Al
where F, =F(A,)=1—2H(A, ) and

4,Vqg—D +zVC—D +yVD —A

A J k (A2)

k V1—q—C+D

Next we use the identity
Fla+e)=F(a)+V2/mee 2 +0()

to expand the result to order 1/VK using the scaling as-
sumptions for the order parameters.
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Expanding (A1) to second order in O(1/ VK ) yields
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K —_—
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k=qVK

(A3)

As K — o, we use the central limit theorem on each of the different sums in the argument of the H function to obtain
Eq. (33).
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